Clinical Guidance

Paediatric Critical Care:
Early Management of Burns

Summary
Explanation regarding management of a child with burns. This does not cover pre-hospital first aid and initial management of chemical burns.

<table>
<thead>
<tr>
<th>Document Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document type</td>
</tr>
<tr>
<td>Document name</td>
</tr>
<tr>
<td>Document location</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Effective from</td>
</tr>
<tr>
<td>Review date</td>
</tr>
<tr>
<td>Owner</td>
</tr>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>Approved by, date</td>
</tr>
<tr>
<td>Superseded documents</td>
</tr>
<tr>
<td>Related documents</td>
</tr>
<tr>
<td>Keywords</td>
</tr>
</tbody>
</table>
| Relevant external law, regulation, standards | London South East Burn Network (LSEBN)
LSEBN identification of burn type
LSEBN management of severe burns |

This clinical guideline has been produced by the South Thames Retrieval Service (STRS) at Evelina London for nurses, doctors and ambulance staff to refer to in the emergency care of critically ill children.

This guideline represents the views of STRS and was produced after careful consideration of available evidence in conjunction with clinical expertise and experience. The guidance does not override the individual responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient.

<table>
<thead>
<tr>
<th>Change History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td>Aug 15</td>
</tr>
</tbody>
</table>
Paediatric Critical Care

Burns (early management)

- Mandatory multidisciplinary assessment in all cases – including plastic surgeons & anaesthetists
- Burns referral if Total Burn Surface Area (TBSA) > 10%
 - Burns ICU (Chelmsford) if intubated (any reason) or TBSA >20%

If chemical burn ensure fully decontaminated

- C-spine protection if any possibility of spinal injury
- Maintain patent airway
- Early intubation if anticipated airway problems (*see right)

- Rapid Sequence Induction with Rocuronium (not suxamethonium)
- CUFFED and UNCUT endotracheal tube (rides up with oedema)
 - Consider suture or wire to teeth in major facial burns to secure

Breathing

- Ensure adequate oxygenation and ventilation, maintain sat's >92%
- Respiratory failure can be due to chest trauma, inhalational injury or restrictive chest wall eschar formation

Circulation

- 2x large bore cannulae or intraosseous access in first 5 minutes
- Blood Gas (lactate, O2Hb, COHb, MethHb), x-match, glucose, U&Es; CK; urine b-HCG if female adolescent
- In shock: 20ml/kg balanced crystalloid (check serum K+) titrated to cardiovascular response
- Burns fluid resuscitation using Parkland Formula
- Refractory hypotension, consider other causes e.g. trauma
- Electrical burn: Baseline 12 lead ECG & monitor for arrhythmias

Parkland Formula

- Applicable to burns > 10% TBSA
- Fluid requirement starts at time of burn
- Aim to replace fluid lost from burned surface in first 24 hours
- Total volume (first 24hrs) of balanced crystalloid solution

 \[
 4\text{ml} \times \text{weight (kg)} \times \% \text{TBSA}
 \]

 \[
 50\% \text{ volume in first 8 hrs} \rightarrow 0.25\text{ml/kg/%TBSA/hr}
 \]

 \[
 50\% \text{ volume in next 16hrs} \rightarrow 0.125\text{ml/kg/%TBSA/hr}
 \]

- Maintain urine output 1ml/kg/hr; if evidence of myoglobinuria (rhabdomyolysis), aim for 2ml/kg/hr
- Other trauma & bleeding may require additional resuscitation.

Neurological status

- Assess and document coma score, pupil size & BM.
- Reduced GCS may be multifactorial: consider CT head

Exposure / Environment:

- Risk of hypothermia: Actively maintain normothermia
- Secondary survey: Examine head to toe, front and back.
- Check distal perfusion, temperature & colour; consider escharotomy for circumferential limb burns or chest wall injury
- Use Lund & Browder chart to document percentage + depth of burn. Do not count erythema (estimate if no chart: Child’s palm =1% BSA)
- Cover burn area with longitudinal cling film (avoid circumferential dressings and face)
- Early urethral catherisation (before oedema)

Anticipate airway problems:

1) Airway burn &/or Inhalation injury: burns involving face or entire neck circumference; stridor, singed nasal hair, carbonaceous debris in/around mouth or nose & in sputum
2) Reduced or failing level of consciousness
3) Large burn > 25%
4) Electrical burns

Carbon Monoxide (CO) poisoning

- Pulse oximetry unreliable (false high SpO2 despite arterial hypoxia)
- Arterial blood gas (normal COHb levels 1-3%)
- Use 100% O2 - CO clears in 3-5 hrs
- CO Hb level > 20% may benefit from Hyperbaric Oxygen Therapy

Cyanide poisoning (aerosolisation of upholstery and fabrics)

- Features: metabolic acidosis (esp. if lactate >10mmol/l) despite 100% O2 & adequate fluid resuscitation in first 2 hours of presentation; arteriovenous saturation difference <5%
- Treatment: Hydroxycobalamin (Cyanokit) 70mg/kg IVi or 50% sodium thiosulphate 0.5ml/kg over 10 mins
- Discuss with burns centre & on call GSTT consultant toxicologist

Anticipate airway problems:

1) Airway burn &/or Inhalation injury: burns involving face or entire neck circumference; stridor, singed nasal hair, carbonaceous debris in/around mouth or nose & in sputum
2) Reduced or failing level of consciousness
3) Large burn > 25%
4) Electrical burns

Carbon Monoxide (CO) poisoning

- Pulse oximetry unreliable (false high SpO2 despite arterial hypoxia)
- Arterial blood gas (normal COHb levels 1-3%)
- Use 100% O2 - CO clears in 3-5 hrs
- CO Hb level > 20% may benefit from Hyperbaric Oxygen Therapy

Cyanide poisoning (aerosolisation of upholstery and fabrics)

- Features: metabolic acidosis (esp. if lactate >10mmol/l) despite 100% O2 & adequate fluid resuscitation in first 2 hours of presentation; arteriovenous saturation difference <5%
- Treatment: Hydroxycobalamin (Cyanokit) 70mg/kg IVi or 50% sodium thiosulphate 0.5ml/kg over 10 mins
- Discuss with burns centre & on call GSTT consultant toxicologist

Reference: LSEBN 2018; COBIS Guidelines 2009; Greenhalgh DG; Endorf FW. Burn Management Current Opinion in Critical Care 2011; Opjeda S. Propranolol J. of Burn Care & Research 2018; Sen S. Inhalation Injury Burns & Trauma 2017