Clinical Guidance

Paediatric Critical Care:
Diabetic Ketoacidosis (DKA)

Summary
This guideline is for staff to use when treating children with Diabetic Ketoacidosis. It gives advice on treatment, medications, risk factors and resuscitation as well as rehydration and neurological implications.

<table>
<thead>
<tr>
<th>Document Detail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document type</td>
</tr>
<tr>
<td>Document name</td>
</tr>
<tr>
<td>Document location</td>
</tr>
<tr>
<td>Version</td>
</tr>
<tr>
<td>Effective from</td>
</tr>
<tr>
<td>Review date</td>
</tr>
<tr>
<td>Owner</td>
</tr>
<tr>
<td>Author(s)</td>
</tr>
<tr>
<td>Approved by, date</td>
</tr>
<tr>
<td>Superseded documents</td>
</tr>
<tr>
<td>Related documents</td>
</tr>
<tr>
<td>Keywords</td>
</tr>
</tbody>
</table>

This clinical guideline has been produced by the South Thames Retrieval Service (STRS) at Evelina London for nurses, doctors and ambulance staff to refer to in the emergency care of critically ill children.

This guideline represents the views of STRS and was produced after careful consideration of available evidence in conjunction with clinical expertise and experience. The guidance does not override the individual responsibility of healthcare professionals to make decisions appropriate to the circumstances of the individual patient.

Key Abbreviations:
NaCl = Sodium chloride,
Na = sodium, K = Potassium, Cl = Chloride

<table>
<thead>
<tr>
<th>Change History</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

DTC Reference: 180251f
Review by: January 2021
Monitoring therapy (avoid rapid falls in plasma osmolality to reduce the risk of cerebral oedema)\(^4\)

- Catheter and NG tube should be placed for accurate fluid balance (DO NOT chase urine output!)
- **Half hourly:** GCS and neuro-observations, hourly blood glucose, 2 hourly blood gas (venous / arterial: not capillary), Electrolytes, phosphate and blood ketones (if available)

1. **RESUSCITATION** Max 10-20ml/kg 0.9% NaCl bolus initially (Hypotension is rare in paediatric DKA)

 a) Avoid fluid boluses after initial 20ml/kg unless hypotensive (>40ml/kg in 1st 4 hours: risk of cerebral oedema)\(^1\)

 b) Use inotropes (Dopamine) if hypotensive despite 20ml/kg Fluid bolus.

 c) Consider hypertonic sodium chloride (3 to 5ml/kg 2.7% sodium chloride) if refractory hypotension

 d) Antibiotics if sepsis suspected. Suspect if fluid refractory shock.

 e) Anuria is rare in DKA: limits ketone excretion with persisting acidosis: may need dialysis

2. **REHYDRATE OVER 48 h** (Assume max of 10% dehydration)

 - **Prescribe hourly TOTAL FLUID RATE** according to table (N.B. max 120ml/h) (assumes 10% dehydration and includes 60% maintenance without urine replacement)

 - Initially use 0.9% sodium chloride without glucose (do not use hypotonic fluid e.g. 0.45% NaCl)

 - If >40ml/kg fluid given in 1st 4 hours, then reduce total fluid rate by a further 1ml/kg/h

 - When glucose <15 mmol/L use 2 bag system (add 0.9% NaCl with 10% glucose in 2nd bag) & adjust ratio of two bags to keep hypotonic despite 20ml/kg Fluid bolus.

 - As glucose changes adjust ratio of Bag1 (glucose free) vs Bag2 (10% glucose+0.9% sodium chloride)

 - DO NOT replace urine output (polyuria will reduce as glucose and ketone induced diuresis improves)

 - Add 40mmol/litre KCl to all fluid bags unless [K\(^+\)] is > 5.5 mmol/L

 - DO NOT routinely supplement phosphate unless very low (< 0.3 mmol/L)

 Adjust total fluid rate using corrected Na (Na\(_{corr}\))\(^6\)

 Rise in Na\(_{corr}\) > 5mmol/L in 4-8 h = too much fluid LOSS = increase fluid rate by 1ml/kg/hour

 Fall in Na\(_{corr}\) > 5mmol/L in 4-8 h = too much fluid GAIN = reduce fluid rate by 1ml/kg/hour

 If corrected Na falling or not increasing, consider hypertonic NaCl if signs of cerebral oedema

 Try to ensure Corrected Na does not fall with therapy (minimise risk cerebral oedema)

3. **KETOACIDOSIS** (note: insulin is used to inhibit ketone production from fat cells)

 - Low dose insulin (0.05 units/kg/h) adequate in most cases. Delay insulin till 1 hr after initial fluid resus\(^6\)

 - 0.1units/kg/h is occasionally needed if insulin resistance (typically adolescents)

 - Rarely higher dose insulin (0.2units/kg/h) i f blood ketones remain elevated despite 0.1units/kg/h (usually in association with sepsis. Lactate is also usually high (> 2mmol/L). Discuss with STRS)

 - DO NOT STOP INSULIN if glucose falls: insulin only when blood ketones <1 mmol/L or Anion Gap <18 mEq/L

 - Blood ketosis usually resolves by 12 h (<1 mmol/L). Should correlate with anion gap (< 18 mEq/L)

 - Urine ketones usually persist for 24 to 48 hours and do not reflect serum ketonemia.

 - Base deficit misleading as all DKA have hyperchloremic acidosis. Quantify base deficit due to chloride

 - Hyperchloremic acidosis if Cl:\(Na\) ratio > 0.8 or Base deficit chloride > -10. This may take 24 h to resolve\(^7\)

4. **DEPRESSED LEVEL OF CONSCIOUSNESS: ASSUME CEREBRAL OEDEMA**

 - Discuss with the consultant on call. Highest risk for cerebral oedema in first 8 to 12 h

 - Use OSMOTHERAPY: 3 to 5 ml/kg 2.7% hypertonic NaCl\(^2\) (even if plasma sodium high)

 - Mannitol 0.5g/kg (2.5 ml/kg of 20% Mannitol) only if hypertonic NaCl not available

 - Expect rapid response within 10-15 minutes of administering hypertonic NaCl

 - If response, dose can be repeated 2 to 3 times if required (track corrected Na changes)

 - **If the patient does not respond to osmotherapy or is not protecting the airway:** intubate and ventilate

 - Aim for pCO\(_2\) 4 to 4.5kPa if ventilated (avoid further cerebral ischaemia from hypocapnic vasoconstriction)

 - Ensure patient not hypovolaemic on anaesthetic induction (use hypertonic NaCl as volume and consider inotropes)

 - Obtain CT scan to identify cause of coma. Discuss with STRS

NOTE: 1) Hyperosmolar Hyperglycaemic State: rare in children: can present with hyperglycemia without ketoadosis. May require higher fluid rehydration rates and careful adjustment of insulin as usually not ketogenic

*BSPED/ NICE 2015 guidelines have similar principles. We recommend using this guideline if referring patients to STRS with severe DKA. References: 1. Glaser NEJM 2001: 344(4); 264-265
3. Roberts Ped Diabetes 2001; 2; 109-114

DTC Reference: 180251f
Review by: January 2021